Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Clonality as a driver of spatial genetic structure in populations of clonal tree species.

Identifieur interne : 001E56 ( Main/Exploration ); précédent : 001E55; suivant : 001E57

Clonality as a driver of spatial genetic structure in populations of clonal tree species.

Auteurs : Monika Dering [Pologne] ; Igor Jerzy Chybicki ; Grzegorz R Czka

Source :

RBID : pubmed:26153428

Descripteurs français

English descriptors

Abstract

Random genetic drift, natural selection and restricted gene dispersal are basic factors of the spatial genetic structure (SGS) in plant populations. Clonal reproduction has a profound effect on population dynamics and genetic structure and thus emerges as a potential factor in contributing to and modelling SGS. In order to assess the impact of clonality on SGS we studied clonal structure and SGS in the population of Populus alba. Six hundred and seventy-two individuals were mapped and genotyped with 16 nuclear microsatellite markers. To answer the more general question regarding the relationship between SGS and clonality we used Sp statistics, which allows for comparisons of the extent of SGS among different studies, and the comparison of published data on SGS in clonal and non-clonal tree species. Sp statistic was extracted for 14 clonal and 27 non-clonal species belonging to 7 and 18 botanical families, respectively. Results of genetic investigations conducted in the population of P. alba showed over-domination of clonal reproduction, which resulted in very low clonal diversity (R = 0.12). Significant SGS was found at both ramet (Sp = 0.095) and genet level (Sp = 0.05) and clonal reproduction was indicated as an important but not sole driving factor of SGS. Within-population structure, probably due to family structure also contributed to high SGS. High mean dominance index (D = 0.82) indicated low intermingling among genets. Literature survey revealed that clonal tree species significantly differ from non-clonal species with respect to SGS, having 2.8-fold higher SGS. This led us to conclude that clonality is a life-history trait that can have deep impact on processes acting in populations of clonal tree species leading to significant SGS.

DOI: 10.1007/s10265-015-0742-7
PubMed: 26153428


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Clonality as a driver of spatial genetic structure in populations of clonal tree species.</title>
<author>
<name sortKey="Dering, Monika" sort="Dering, Monika" uniqKey="Dering M" first="Monika" last="Dering">Monika Dering</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Systematics and Geography, Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland, mdering@man.poznan.pl.</nlm:affiliation>
<country wicri:rule="url">Pologne</country>
<wicri:regionArea>Laboratory of Systematics and Geography, Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland</wicri:regionArea>
<wicri:noRegion>Poland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chybicki, Igor Jerzy" sort="Chybicki, Igor Jerzy" uniqKey="Chybicki I" first="Igor Jerzy" last="Chybicki">Igor Jerzy Chybicki</name>
</author>
<author>
<name sortKey="R Czka, Grzegorz" sort="R Czka, Grzegorz" uniqKey="R Czka G" first="Grzegorz" last="R Czka">Grzegorz R Czka</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26153428</idno>
<idno type="pmid">26153428</idno>
<idno type="doi">10.1007/s10265-015-0742-7</idno>
<idno type="wicri:Area/Main/Corpus">001C22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C22</idno>
<idno type="wicri:Area/Main/Curation">001C22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C22</idno>
<idno type="wicri:Area/Main/Exploration">001C22</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Clonality as a driver of spatial genetic structure in populations of clonal tree species.</title>
<author>
<name sortKey="Dering, Monika" sort="Dering, Monika" uniqKey="Dering M" first="Monika" last="Dering">Monika Dering</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Systematics and Geography, Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland, mdering@man.poznan.pl.</nlm:affiliation>
<country wicri:rule="url">Pologne</country>
<wicri:regionArea>Laboratory of Systematics and Geography, Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland</wicri:regionArea>
<wicri:noRegion>Poland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chybicki, Igor Jerzy" sort="Chybicki, Igor Jerzy" uniqKey="Chybicki I" first="Igor Jerzy" last="Chybicki">Igor Jerzy Chybicki</name>
</author>
<author>
<name sortKey="R Czka, Grzegorz" sort="R Czka, Grzegorz" uniqKey="R Czka G" first="Grzegorz" last="R Czka">Grzegorz R Czka</name>
</author>
</analytic>
<series>
<title level="j">Journal of plant research</title>
<idno type="eISSN">1618-0860</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Genetic Variation (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Poland (MeSH)</term>
<term>Populus (genetics)</term>
<term>Reproduction (MeSH)</term>
<term>Trees (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (génétique)</term>
<term>Pologne (MeSH)</term>
<term>Populus (génétique)</term>
<term>Reproduction (MeSH)</term>
<term>Répétitions microsatellites (MeSH)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Poland</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Variation</term>
<term>Microsatellite Repeats</term>
<term>Reproduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Pologne</term>
<term>Reproduction</term>
<term>Répétitions microsatellites</term>
<term>Variation génétique</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Pologne</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Random genetic drift, natural selection and restricted gene dispersal are basic factors of the spatial genetic structure (SGS) in plant populations. Clonal reproduction has a profound effect on population dynamics and genetic structure and thus emerges as a potential factor in contributing to and modelling SGS. In order to assess the impact of clonality on SGS we studied clonal structure and SGS in the population of Populus alba. Six hundred and seventy-two individuals were mapped and genotyped with 16 nuclear microsatellite markers. To answer the more general question regarding the relationship between SGS and clonality we used Sp statistics, which allows for comparisons of the extent of SGS among different studies, and the comparison of published data on SGS in clonal and non-clonal tree species. Sp statistic was extracted for 14 clonal and 27 non-clonal species belonging to 7 and 18 botanical families, respectively. Results of genetic investigations conducted in the population of P. alba showed over-domination of clonal reproduction, which resulted in very low clonal diversity (R = 0.12). Significant SGS was found at both ramet (Sp = 0.095) and genet level (Sp = 0.05) and clonal reproduction was indicated as an important but not sole driving factor of SGS. Within-population structure, probably due to family structure also contributed to high SGS. High mean dominance index (D = 0.82) indicated low intermingling among genets. Literature survey revealed that clonal tree species significantly differ from non-clonal species with respect to SGS, having 2.8-fold higher SGS. This led us to conclude that clonality is a life-history trait that can have deep impact on processes acting in populations of clonal tree species leading to significant SGS.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26153428</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1618-0860</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>128</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of plant research</Title>
<ISOAbbreviation>J Plant Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Clonality as a driver of spatial genetic structure in populations of clonal tree species.</ArticleTitle>
<Pagination>
<MedlinePgn>731-45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10265-015-0742-7</ELocationID>
<Abstract>
<AbstractText>Random genetic drift, natural selection and restricted gene dispersal are basic factors of the spatial genetic structure (SGS) in plant populations. Clonal reproduction has a profound effect on population dynamics and genetic structure and thus emerges as a potential factor in contributing to and modelling SGS. In order to assess the impact of clonality on SGS we studied clonal structure and SGS in the population of Populus alba. Six hundred and seventy-two individuals were mapped and genotyped with 16 nuclear microsatellite markers. To answer the more general question regarding the relationship between SGS and clonality we used Sp statistics, which allows for comparisons of the extent of SGS among different studies, and the comparison of published data on SGS in clonal and non-clonal tree species. Sp statistic was extracted for 14 clonal and 27 non-clonal species belonging to 7 and 18 botanical families, respectively. Results of genetic investigations conducted in the population of P. alba showed over-domination of clonal reproduction, which resulted in very low clonal diversity (R = 0.12). Significant SGS was found at both ramet (Sp = 0.095) and genet level (Sp = 0.05) and clonal reproduction was indicated as an important but not sole driving factor of SGS. Within-population structure, probably due to family structure also contributed to high SGS. High mean dominance index (D = 0.82) indicated low intermingling among genets. Literature survey revealed that clonal tree species significantly differ from non-clonal species with respect to SGS, having 2.8-fold higher SGS. This led us to conclude that clonality is a life-history trait that can have deep impact on processes acting in populations of clonal tree species leading to significant SGS.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dering</LastName>
<ForeName>Monika</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Systematics and Geography, Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland, mdering@man.poznan.pl.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chybicki</LastName>
<ForeName>Igor Jerzy</ForeName>
<Initials>IJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rączka</LastName>
<ForeName>Grzegorz</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D017418">Meta-Analysis</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>J Plant Res</MedlineTA>
<NlmUniqueID>9887853</NlmUniqueID>
<ISSNLinking>0918-9440</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="Y">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011044" MajorTopicYN="N" Type="Geographic">Poland</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012098" MajorTopicYN="N">Reproduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>05</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26153428</ArticleId>
<ArticleId IdType="doi">10.1007/s10265-015-0742-7</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Evol Biol. 2012 Oct 18;12:205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(2):506-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Apr;13(4):921-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2013 Nov;100(11):2250-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24186959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Feb;15(2):559-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Jun;17(11):2743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18482266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2005 Feb;92(2):252-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21652402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2002 Dec;11(12):2499-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12453235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Sep;13(9):2645-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15315677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Nov;19(22):4949-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20964756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Nov;17(22):4827-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2009 Jan-Feb;100(1):106-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18936113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2013 Mar;141(1-3):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23456320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2010 Apr;105(4):637-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2011 Dec;107(6):589-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21712844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2010 Dec;106(6):859-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20880935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1995 Dec;91(8):1253-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24170054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Oct;15(12):3617-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Apr;14(4):1045-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15773935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Aug;164(4):1635-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2012 Jun;108(6):633-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22354112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 May;98(5):274-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17245421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 1;28(19):2537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22820204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2012 Apr 05;12:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22480185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Apr;103(6):835-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19181748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2013 Jan-Feb;104(1):105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23109719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Oct;21(20):4925-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22998190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 Nov;18(21):4398-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19793352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1943 Mar;28(2):114-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17247074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2003 Sep;12(9):2483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12919486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2015 Sep;115(3):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25873148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Jul;14(8):2611-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15969739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Jun;17(12):2865-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18510586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2013 Sep;3(10):3495-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24223285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2010 Oct;105(4):348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20531447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2008 Feb;95(2):258-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21632350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2011 Jun;106(6):973-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21139632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Dec;102(6):997-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18845663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genet. 2013 Oct 18;14:101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24134743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1995 Dec;49(6):1280-1283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28568523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Resour. 2008 Jan;8(1):103-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21585727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2013 Sep-Oct;104(5):692-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23885091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23536860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Jul;21(14):3593-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22624974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Nov;188(3):868-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20659301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2011 Dec;1(4):502-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22393518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Apr;109(5):1001-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22314757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2005 Aug;96(2):279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15928007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1999 Aug;53(4):1068-1078</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28565540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2011 Nov;20(21):4421-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21981067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Biol. 2012 Dec;35(4):838-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23271946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 10;8(7):e68514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23874648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e38288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22675539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2006 Mar;15(3):851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16499707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Mar;97(3):458-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chybicki, Igor Jerzy" sort="Chybicki, Igor Jerzy" uniqKey="Chybicki I" first="Igor Jerzy" last="Chybicki">Igor Jerzy Chybicki</name>
<name sortKey="R Czka, Grzegorz" sort="R Czka, Grzegorz" uniqKey="R Czka G" first="Grzegorz" last="R Czka">Grzegorz R Czka</name>
</noCountry>
<country name="Pologne">
<noRegion>
<name sortKey="Dering, Monika" sort="Dering, Monika" uniqKey="Dering M" first="Monika" last="Dering">Monika Dering</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26153428
   |texte=   Clonality as a driver of spatial genetic structure in populations of clonal tree species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26153428" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020